68 research outputs found

    Towards a Simplified Dynamic Wake Model using POD Analysis

    Full text link
    We apply the proper orthogonal decomposition (POD) to large eddy simulation data of a wind turbine wake in a turbulent atmospheric boundary layer. The turbine is modeled as an actuator disk. Our analyis mainly focuses on the question whether POD could be a useful tool to develop a simplified dynamic wake model. The extracted POD modes are used to obtain approximate descriptions of the velocity field. To assess the quality of these POD reconstructions, we define simple measures which are believed to be relevant for a sequential turbine in the wake such as the energy flux through a disk in the wake. It is shown that only a few modes are necessary to capture basic dynamical aspects of these measures even though only a small part of the turbulent kinetic energy is restored. Furthermore, we show that the importance of the individual modes depends on the measure chosen. Therefore, the optimal choice of modes for a possible model could in principle depend on the application of interest. We additionally present a possible interpretation of the POD modes relating them to specific properties of the wake. For example the first mode is related to the horizontal large scale movement. Besides yielding a deeper understanding, this also enables us to view our results in comparison to existing dynamic wake models

    The Langevin Approach: An R Package for Modeling Markov Processes

    Full text link
    We describe an R package developed by the research group Turbulence, Wind energy and Stochastics (TWiSt) at the Carl von Ossietzky University of Oldenburg, which extracts the (stochastic) evolution equation underlying a set of data or measurements. The method can be directly applied to data sets with one or two stochastic variables. Examples for the one-dimensional and two-dimensional cases are provided. This framework is valid under a small set of conditions which are explicitly presented and which imply simple preliminary test procedures to the data. For Markovian processes involving Gaussian white noise, a stochastic differential equation is derived straightforwardly from the time series and captures the full dynamical properties of the underlying process. Still, even in the case such conditions are not fulfilled, there are alternative versions of this method which we discuss briefly and provide the user with the necessary bibliography

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today
    corecore